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Abstract: The Karnali highway is a vital transport link and the only primary roadway that connects
the remote Karnali region to the lowlands in Mid-Western Nepal. Every year there are reports of
landslides blocking the road, making this area largely inaccessible. However, little effort has focused
on systematically identifying landslides and landslide-prone areas along this highway. In this study,
landslides were mapped with an object-based approach from very high-resolution optical satellite
imagery obtained by the DigitalGlobe constellation in 2012 and PlanetScope in 2018. Landslides
ranging from 10 to 30,496 m2 were detected within a 3 km buffer along the highway. Most of
the landslides were located at lower elevations (between 500–1500 m) and on steep south-facing
slopes. Landslides tended to cluster closer to the highway, near drainage channels and away from
faults. Landslides were also most prevalent within the Kuncha Formation geologic class, and the
forested and agricultural land cover classes. A susceptibility map was then created using a logistic
regression methodology to highlight patterns in landslide activity. The landslide susceptibility map
showed a good prediction rate with an area under the curve (AUC) of 0.90. A total of 33% of the
study arealies in high/very high susceptibility zones. The map highlighted the lower elevated areas
between Bangesimal and Manma towns with the Kuncha Formation geologic class as being the most
hazardous. The banks of the Karnali River, its tributaries and areas near the highway were also highly
susceptible to landslides. The results highlight the potential of very high-resolution optical imagery
for documenting detailed spatial information on landslide occurrence, which enables susceptibility
assessment in remote and data scarce regions such as the Karnali highway.

Keywords: Karnali highway; landslides; very high-resolution optical imagery; object-based image
analysis; DigitalGlobe; PlanetScope; landslide susceptibility; logistic regression; eCognition

1. Introduction

The mountains in Nepal are one of the most hazardous environments in the world, with frequent
landslides caused by tectonic activity, monsoonal rainfall and infrastructure development [1]. About
72% of the country is hilly or mountainous, with 50% of the total population residing in these areas [2].
Long-term development and economic prosperity of this region is contingent on the availability and
reliability of roads for access to infrastructure such as marketplaces, schools, and hospitals [3]. As a
result, understanding the frequency, distribution, and susceptibility of landslides along Nepal’s main
transportation corridors is vital for better characterizing the impact that landslides may impose on the
population within this region.
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The Karnali region (Figure 1) in Mid-Western Nepal has a high poverty rate, low social development,
weak governance and high development costs due to inaccessibility [4]. Food insecurity is a major
problem in this region [5]. The Karnali highway is the only major transportation link that connects Jumla
district in the Karnali region to Surkhet district, which contains the provincial capital. Construction
of the highway started in 1991 and is still ongoing under Nepal’s Road Sector Development Project
with support from the World Bank [6]. Every year, there are reports of highway blockade by
landslides, particularly during the monsoon season that spans June through September, making this
area inaccessible by road [7]. Despite the known landslide frequency, there have been no systematic
landslide inventories conducted along this highway to date. In order to safeguard the livelihood of the
people, ensure sustained development in this region and the proper functioning of the highway, areas
prone to landslides must be identified and, ultimately, the risk must be mitigated.
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Figure 1. Study area and location of the Karnali highway. The tiles highlight the DigitalGlobe (DG)
satellite footprint, with the red box indicating the validation area for the object-based image analysis
(OBIA) mapping method. PlanetScope data obtained for 2018, not shown here, covers the same
approximate study region as the DG satellite footprint in 22 tiles.

Landslide susceptibility maps provide an estimate of where landslides might occur, typically
based on knowledge of landslides that have occurred in the past [8]. There are many different methods
for conducting landslide susceptibility mapping depending on the objectives of the resulting map [9].
Landslide susceptibility mapping can be categorized as heuristic, deterministic and statistical [10].
Heuristic methods are based on expert knowledge, hence are subjective. Deterministic approaches
require a large number of input data gathered from laboratory tests and field visits, and can only
be applied in smaller areas [11]. Statistical approaches are based on relationships between known
or inferred instability variables with past and present distributions of landslides [12]. Similarly in
Nepal, various landslide susceptibility mapping methods have been tested and their performances
have been documented [13–29]. Most of these studies have been conducted in Central and Eastern
Nepal, possibly due to the lack of landslide data in the Western part of the country.
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The most important information required for susceptibility mapping is an inventory of past
landslide occurrences. Conventional landslide inventories are produced by field visits and aerial
photo interpretation [30]. This process is very time-consuming and can be subjective [31,32]. Recent
advancements in remote-sensing technologies have significantly increased our ability to rapidly map
landslides of various sizes, with less in situ surveys or human interaction [33–35]. Remote sensing of
landslides can be categorized into two groups: pixel-based and object-based image analysis (OBIA).
Pixel-based methods utilize spectral information alone, and ignore spatial information [36]. Hence,
these are not the best method to map geomorphic processes such as landslides [37]. OBIA, on the other
hand, incorporates spectral, textural, morphological and topographical characteristics, which are more
suitable for detecting landslides [38]. OBIA has been successfully used to map landslides all around
the world [37,39–57]. Comparative studies between pixel-based methods and OBIA have highlighted
the superiority of OBIA in detecting landslides with fewer false positives [58,59].

Landsat 8, with a spatial resolution of 30 m, has been found effective in mapping larger landsides
for rapid assessment in Nepal [60–63]. The launch of Sentinel-2, with a spatial resolution of 10 m in 2015,
has also increased the availability of free high-resolution optical imagery and enabled landslide detection
at finer scales than what was possible with previous open source satellite imagery from Landsat and
ASTER. However, hazard and risk studies require a complete landslide inventory, and freely available
optical imagery from sensors such as Sentinel-2, Landsat and ASTER are not capable of detecting
small landslides with areas of less than 100 m2. As a result, very high-resolution (VHR) imagery
is the only space-based option for a systematic and comprehensive landslide mapping [64]. VHR
satellites are commercially owned, expensive and not freely available, except when disaster charters
(www.disasterscharter.org) are activated. NextView licensing agreement, a partnership between the
U.S. government and U.S. commercial vendors, provides access to VHR imagery for federal agencies in
support of scientific research [65]. This partnership provides access to VHR optical imagery obtained
from the DigitalGlobe (DG) (Westminster, Colorado, USA) constellation. The Small Satellite Data Buy
program [66] is another initiative started by NASA to investigate the effectiveness of VHR imagery in
support of research activities undertaken by the agency. This program provides access to additional
VHR optical imagery from three satellites: SkySat, RapidEye and PlanetScope, operated by Planet Labs
Inc. (San Francisco, California, USA) for NASA funded projects.

The aim of this study is to create multi-temporal landslide inventories along the Karnali highway
using VHR imagery from DG and PlanetScope with the OBIA methodology. The effectiveness of
this remote sensing based landslide inventory is demonstrated by producing a susceptibility map,
documenting its predictive capacity and potential applications.

2. Study Area

The Karnali highway (Figure 1) in Province 6 of Nepal runs south to north starting at Bangesimal
in the Surkhet District and ending in Khalanga, of the Jumla District. This highway mostly runs
parallel to the Karnali river between Bangesimal and Manma. Beyond Manma, it follows the Tila
river, a tributary of the Karnali river. Since we are interested in landslide activity that might affect the
highway, we defined a buffer of 3 km along the highway as our study area. The route is 233 km long
and paved. Construction of the highway started in 1991/1992. However, the road was finally opened
along the entire route to Khalanga only on 1 April 2007.

Nepal is divided into five geotectonic zones from south to north: the Gangetic Plain, Siwaliks,
Lesser Himalaya, Higher Himalaya and Tibetan-Tethys Himalaya. These zones are separated from
each other by the thrust faults. The southernmost fault, the Main Frontal Thrust (MFT) separates the
Siwaliks from the Gangetic Plain. The Main Boundary Thrust (MBT) separates the Lesser Himalaya
from the Siwaliks. The Main Central Thrust (MCT) separates the Higher Himalaya from the Lesser
Himalaya. The South Tibetan Detachment System (STDS) marks the boundary between the Higher
Himalaya and the overlying fossiliferous sequence of the Tibetan-Tethys Himalaya. The Karnali
highway passes through two geotectonic zones: the Siwaliks and the Lesser Himalaya (Figure 2).

www.disasterscharter.org
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The Neogene Siwaliks consists of mudstone, sandstone and conglomerate. The Lesser Himalayan
rocks mainly consist of low to medium grade Proterozoic metamorphic rocks (e.g., phyllite, schist,
metasandstone and quartzite) of the Kuncha Formation along with metasedimentary rocks of the
Nawakot Complex that extend from MBT at the southern margin to MCT at the northern margin.
The granitic intrusions are also present within the Lesser Himalayas, such as the Ulleri Gneiss.
The Gondwana rocks and Post-Gondwana Eocene-Early Miocene sediments of the Tansen group are
present sporadically throughout the Lesser Himalayas. The Lesser Himalayan Crystalline, consisting
of Proterozoic gneisses and schists, are present in the Lesser Himalayas as klippe.
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3. Materials and Methods

3.1. Data

3.1.1. Satellite Imagery

Multispectral data from three satellites of the DG constellation: GeoEye-1 (GE01), QuickBird-2
(QB02) and WorldView-2 (WV02) (Table 1) and PlanetScope [68] were used for creating the landslide
inventories. The DG satellites acquire images over a certain area only when it is tasked and at various
off-nadir angles. VHR imagery tends to be best if the off-nadir angle is <20◦ [64]. Images acquired with
higher off-nadir angles will suffer from image distortion and result in lower georeferencing accuracies.
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We queried the DG archives for images with off-nadir angle <20◦ and cloud cover <20%. The satellite
coverage over this area was intermittent, with nearly complete coverage available only for the year
2012. In order to complete the coverage, we incorporated one frame from 2010, two frames from 2011
and two frames from 2013 (Figure 1). As most of the images are from 2012, we will consider landslides
detected using DG as a 2012 inventory. DG Level 1B products are available through the NextView
license [65]. DG level 1B data are radiometrically and sensor corrected, but not projected to a plane
using map projection or datum [69]. We orthorectified the data using a 30 m NASADEM [70] and then
converted into top-of-the-atmosphere reflectance for normalized difference vegetation index (NDVI)
calculations. All the processing was done using Polar Geospatial Center’s orthorectification tools [71]
on the Advanced Data Analytics Platform (ADAPT) at NASA Goddard Space Flight Center (GSFC)’s
NASA Center for Climate Simulation (NCCS) (http://www.nccs.nasa.gov/services/adapt).

Table 1. DG imagery used in this study.

Sensor Acquisition Time Cloud Cover (%) Off Nadir (degree) Resolution (m)

GE01 30 December 2010 0 10.9 1.65
GE01 11 December 2011 0 15.9 1.65
GE01 11 December 2011 6 20.4 1.65
WV02 12 January 2012 0 14.5 1.85
WV02 8 October 2012 0 9.1 1.85
WV02 8 October 2012 0.6 8.9 1.85
WV02 8 October 2012 0 8.7 1.85
WV02 8 October 2012 2.4 8.5 1.85
QB02 12 October 2012 0.4 12.3 2.4
WV02 26 February 2013 0 4.2 1.85
QB02 30 May 2013 0 16.5 2.4

In order to map recent landslides, we created another landslide inventory (referred to as the 2018
inventory) using 22 PlanetScope tiles from 11 and 12 November 2018, covering the whole highway. We
used Level 3B PlanetScope Ortho Scene products at 3 m resolution with tile size of 24 km by 7 km.

3.1.2. Landslide Explanatory Variables

The explanatory variables (Figure 3) used in this study can be categorized into four main groups:
topographical, geological, hydrological and anthropogenic. These variables were generated in raster
format with spatial resolution of 30 m in ArcGIS.

Topographical variables considered in this study are elevation, slope and aspect and were
generated using a 30 m NASADEM. Elevation controls most of the geomorphological and geological
processes and ranges across the study region from 341 to 3753 m. The elevation was classified into eight
classes (Figure 3a). Slope is often considered the most important factor contributing to landslides [72]
and varies from 0 to 75◦ over the study area. The slope was classified into eight classes (Figure 3b).
Slope aspect determine the amount of insolation and rainfall received due to prevailing climatologic
patterns, which can have a substantial influence on landslide triggering [73]. The slope aspect was
prepared with values ranging from 0 to 360 and further classified into nine classes (Figure 3c).

Geology plays an important role in the occurrences of landslides as lithological and structural
variations often lead to a difference in rock strength and permeability of soils and rocks [74,75].
Geological variables were obtained from digitized geological map from the Department of Mines
and Geology in Nepal [67]. The Karnali highway passes through seven geological classes (Figure 3d).
The main geological structures that demarcate the study area are the MBT and the Mahabharat Thrust
(MT) (Figure 2). These fault lines were digitized from the geological map. Distance to faults were
created using the Euclidean distance toolset in ArcGIS and classified into six classes (Figure 3e).

The hydrological variable was represented by distance to drainage, since runoff adversely affects
stability by eroding the slope or by saturating the lower portion of the hillslope [76]. Drainage was

http://www.nccs.nasa.gov/services/adapt
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obtained from NASADEM using hydrology toolset in ArcGIS. Distance to drainage was calculated
using the Euclidean distance method and classified into five classes (Figure 3f).
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Anthropogenic variables were represented by land cover and distance to highway. Human
activities and road construction along steep mountain terrain destabilize the slope, which can increase
the frequency of landslides [77]. Land cover with seven land cover types (Figure 3g) was obtained
from the 2010 land cover map created from Landsat at 30 m resolution by The International Centre
for Integrated Mountain Development (ICIMOD) [78]. Road networks data were obtained from
OpenStreetMap [79]. The distance to highway was created using the Euclidean distance method and
classified into six classes (Figure 3h).
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3.2. Methods

3.2.1. Landslide Inventory Mapping

The methodology for landslide mapping is outlined in Figure 4. Imagery used in this study have
different dates and acquisition modes. Hence, the methodology described below has been applied to
individual tiles of DG and PlanetScope separately. The steps are described in sequential order.
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Segmentation

The first important procedure is segmentation, which divides an image into objects based on the
homogeneity of the pixel values [80]. We used multiresolution segmentation (MRS) [81] available in
eCognition®Developer 8.9 (Trimble Germany GmbH, Munich, Germany) software [82]. MRS is a
bottom-up region-merging technique in which small objects are merged into bigger ones in subsequent
steps [83]. MRS requires three parameters: scale, shape and compactness. The scale controls the
image object size, with higher scale resulting in larger objects and small scale in smaller objects.
The shape determines the degree to which shape influences segmentation vs. spectral homogeneity.
The compactness defines the weight of compactness criteria. The higher the value, more compact the
objects will be. There are many methods for selecting the optimal scale automatically, such as estimation
of scale parameter 2 [84], plateau objective function [42] and optimal scale parameter selector [85].
However, currently there is no standardized or best method for optimal scale estimation [86]. Manual
trial and error selection of scale parameter is time consuming. Different scales were tested for
segmentation, but obtaining a scale that accounts for different sizes of landslides present in the region
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was very difficult. Generally, over-segmentation is preferred to under-segmentation as merging is
possible in later steps [37]. Hence, to ensure that the boundaries of the smallest landslide areas were
derived, we used a small scale parameter of 10 with shape 0.1 and compactness 0.9 [37,57].

Selection of Likely Landslide Candidate Objects

In this study, landslides and false positives (non-landslide areas appearing/initially classified
as landslides) were detected first, with sequential elimination of false positives in the subsequent
step. A NDVI threshold was used to separate likely landslide candidate objects from other vegetated
surfaces. This threshold is selected according to Martha et al. [41] using K-means clustering [87].
K-means clustering finds cluster centers in continuous data, which can be used to set thresholds for
identification of landslides and removal of false positives. One requirement of this method is that
the number of clusters (K) must be predefined. We used the Elbow method to calculate the number
of clusters (Figure 5a). This method was implemented in Python. In the Elbow method, a graph is
plotted between within-cluster sum of squares (WCSS), which is the distance between each member of
the cluster and its centroid and number of clusters. The main idea behind K-means clustering is to
group data such that the WCSS is at a minimum. The location of bend (elbow) in the plot indicates
the appropriate number of clusters beyond which increasing the number of clusters will not result
in a decrease of WCSS. The elbow point was then determined automatically using the Elbow point
detection method [88,89]. Using the obtained number of clusters, a NDVI threshold was obtained
using K-means clustering to select likely landslide candidate objects (Figure 5b).
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Figure 5. (a) Example application of the number of clusters determined using the Elbow method in
which bend was calculated at 3 using Elbow point-detection method (normalized difference vegetation
index (NDVI) from WV02 image of 8 October 2012); (b) Segmentation using scale parameter 10 and
selected likely landslide candidate objects using an NDVI threshold of 0.44 (green polygons).

Removal of False Positives from Landslides

Since NDVI was used as a distinguishing feature, objects with similar or lower NDVI values,
such as shadows, rivers, roads, buildings, agricultural and barren lands, are misclassified as landslides.
Combination of local knowledge, K-means clustering and spatial datasets were used for elimination of
these false positives in sequential order.

Candidate objects belonging to shadow class were separated using brightness and hillshade.
The hillshade map was generated using solar altitude and azimuth information at the time of image
acquisition in ArcGIS. Shadows have low brightness and hillshade. K-means clustering was then
used to obtain thresholds for brightness and hillshade. River objects were separated using stream
order obtained from Strahler’s method [90]. Stream order >5 represents perennial flowing water
body. Candidate objects that intersected high stream orders were assigned to river class. As water
exhibits negative NDVI, a threshold of NDVI < 0 was also used as additional criteria to separate river.
Alluvial sands are present closer to river channels and are brighter than landslides. Hence, candidate
objects belonging to this class were separated using the distance from river and higher brightness
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values compared to surrounding gorges. Distance to river and brightness threshold were set manually
according to local conditions. Candidate objects that intersected the roads vector layer were separated
and assigned to the road class. Agricultural land such as terrace farming was separated based on low
slope and texture values, which was calculated using the gray level co-occurrence matrix (GLCM) [37].
Mean GLCM of the red band was calculated using Haralick’s method [91]. The mean GLCM threshold
was obtained from K-means clustering. Buildings were removed using shape criteria (i.e., small area
and rectangular fit). Barren areas appeared darker than landslides, so a manual brightness threshold
was selected to differentiate objects belonging to the barren class from landslide objects. A visual check
to remove remaining obvious false positives was achieved in under 15 min. The remaining objects
were merged and exported from eCognition in shapefiles as final landslides for validation and further
analysis in ArcGIS.

3.2.2. Landslide Susceptibility Mapping

In this study we used logistic regression to calculate susceptibility, which allows for a multivariate
regression between a dependent variable and several independent variables [92]. In landslide
susceptibility mapping, the dependent variable is binary, representing the presence or absence of
landslides, and the independent variables are landslide explanatory variables. The independent
variables can be continuous, categorical or a combination of both [93]. The generalized linear model
function in R software was used to fit the logistic regression model. In logistic regression, the logit
function converts the probabilities into values from 0 to 1. The function that defines probability of
landslide occurrence (P) is defined as:

logit = log
( P

1− P

)
= b0 + b1x1 + b2x2 + . . .+ bnxn, (1)

and
P =

1
1 + e−(b0+b1x1+b2x2+...+bnxn)

, (2)

where, xi are the explanatory variables considered by the model, b0 is the intercept and bi the coefficients
assigned to each explanatory variable xi.

4. Results

4.1. Landslide Mapping Validation

Figure 6 shows two example areas for the OBIA-detected landslides from DG and PlanetScope
images. In order to validate the OBIA-detected landslides, the inventory was compared with a reference
inventory that was compiled manually, using one WV02 image from 8 October 2012 (red square in
Figure 1). Three metrics were calculated: true positive (TP), false negative (FN), and false positive
(FP). These metrics were not based on the number of landslides because segmentation-derived image
objects rarely correspond to single landslides due to over or under-segmentation [53,94]. Instead,
the performance metrics were determined according to the overlapping area. TPs are correctly mapped
landslides; FPs are detected landslides that have not been mapped in the reference inventory and
FNs are reference landslides not identified by OBIA. Based on these metrics, the two accuracy indices,
producer accuracy (PA) also known as detection percentage, and user accuracy (UA) were calculated
as follows:

PA =
TP

TP + FN
∗ 100 (3)

UA =
TP

TP + FP
∗ 100 (4)
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DigitalGlobe (top) and PlanetScope (bottom) for two separate locations.

It was observed that the OBIA-based method was only successful in obtaining 59% of the area
of the reference inventory (Table 2). When evaluating based on the intersection of any portion of the
reference and OBIA landslides, a PA of 98% was obtained. This suggests that nearly all landslides
were detected using OBIA, but that the areas were not always accurate and had the tendency to
be underestimated.

Table 2. Comparison of OBIA and manual landslides based on overlapping landslide area.

True Positive (m2) False Positive (m2) False Negative (m2) Producer Accuracy (%) User Accuracy (%)

110,625 61,192 76,181 59.22 64.39

4.2. Spatial Distribution of Landslides

Figure 7 shows the location and size of OBIA-based landslides within the 980 km2 Karnali highway
study area. The size of the landslides varied from 10 to 30,496 m2. As OBIA was not successful in
delineating the complete area of individual landslides, and also to avoid spatial autocorrelation of
landslide samples during susceptibility modelling [95,96], we converted the detected landslides into
initiation points using a Digital Elevation Model (DEM). The initiation point was assumed to be the
highest elevation on the landslide boundary. In total, 1061 landslide initiation points were generated.
A total of 993 landslide initiation points were generated from landslide areas obtained from DG images
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between 2010–2013 and an additional 68 new landslide initiation points were generated using new
landslide areas obtained from PlanetScope images from 2018.
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and 2018.

Figure 8 shows the relationship of landslides with explanatory variables. Most of the landslides
are located between 500–1500 m in elevation (Figure 8a) with slopes of 20–50◦ (Figure 8b). Landslides
are predominantly distributed within south-facing slopes (Figure 8c) that have high insolation and
evaporation rates, resulting in less vegetated surfaces [73]. These slopes are also on the windward
side, which tends to receive more precipitation compared to leeward slopes and might result in
more landslide activity. The phyllite, schist, metasandstone and quartzite of the Kuncha Formation
geologic class contains the majority of the landslides (Figure 8d). The phyllite of the Kuncha Formation
are moderately to highly weathered and fractured [97], which might lead to increased landsliding.
Landslides are located at a distance of 10–15 km from faults (Figure 8e), with the dominant fault zones
oriented east–west. The effects of runoff and undercutting by the river are highlighted by a higher
number of landslides within 500 m of drainages (Figure 8f). Comparison with the 2010 land cover
map reveals landslides predominantly occur in forest and agriculture land cover types (Figure 8g),
which might be due to destruction of forest for settlement and agriculture, as the development of the
highway continued throughout the years. A higher number of landslides within 100 m of the highway
(Figure 8h) suggests landslide initiation could be exacerbated due to infrastructure development
associated with the highway.
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4.3. Landslide Susceptibility and Validation

Different approaches exist for separating the landslide inventory into a training and validation
data set. It is commonly suggested that approximately 20% of the data selected at random should
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be used to validate the result [95]. In this study, 75% of the landslide points selected randomly were
used for training the logistic regression model and 25% were held for validation. An equal number of
non-landslide points were also used during the training phase.

Eight landslide explanatory variables were considered for logistic regression. Aspect, geology
and land cover are categorical variables and elevation, slope, distance to faults, distance to highway
and distance to drainage are continuous variables. All the explanatory variables were classified into
different classes with nominal values. In this study, each of the classes within the variables were
represented using landslide densities and these values were used for logistic regression. Use of
landslide densities also allows for the representation of explanatory variables on the same scale, which
enables us to estimate the effect of each variables on landslide occurrence [98]. Landslide density [99]
was calculated as:

Landslide Density = (Bi/Ai)/(B/A)

where Bi is the number of landslides within a class, Ai is number of pixels in a class, B is the total
number of landslides and A is total number of pixels within the study area.

Table 3 shows the regression coefficients along with test statistics of the eight explanatory variables.
Standard error is the upper and lower limits of the coefficient. The z value is the ratio of regression
coefficient to standard error. Pr(>|z|) is the significance. From the analysis of coefficients and test
statistics, it is seen that all variables except for distance to drainage have a prominent role in landslide
formation, highlighted by the positive coefficient and significance at 0.05 level. Slope with the highest
coefficient has a higher effect on landslide formation than any other variable.

Table 3. Coefficient and test statistics of variables used in logistic regression.

Factor Coefficient Standard Error z Value Pr(>|z|)

Intercept −6.02 0.84 −7.17 0.00
Slope 1.59 0.11 13.97 0.00

Aspect 0.80 0.14 5.55 0.00
Elevation 1.22 0.17 7.18 0.00

Distance to drainage −0.81 0.73 −1.12 0.26
Geology 0.90 0.11 8.33 0.00

Distance to faults 0.59 0.13 4.45 0.00
Land cover 0.39 0.15 2.61 0.00

Distance to highway 0.42 0.09 4.88 0.00

The susceptibility values obtained from logistic regression are probabilities on a continuous scale
from 0 to 1. These values are classified into five levels: very low, low, moderate, high and very high
(Figure 9) using the natural breaks algorithm [100], which groups similar values together maximizing
the difference between classes. Table 4 shows the percentage of landslide susceptibility classes for the
whole study area. A total of 53.58% of the area lies in the very low/low susceptibility zones, whereas
32.97% of the study area lies in the high/very high susceptibility zones. The map shows the lower
elevation areas between Bangesimal and Manma towns (Figure 1), with the Kuncha Formation geologic
class being the most hazardous. The banks of the Karnali River, its tributaries and areas near to the
highway are also highly susceptible to landslides.

The landslide susceptibility map was verified with the receiver operating characteristic (ROC)
curve statistics, a useful method for representing the quality of deterministic and probabilistic detection
and forecast systems [101]. The ROC curve is created by plotting the true positive rate and false positive
rate of each possible binary classification of a dataset [102]. The area under the curve (AUC) indicates
the performance of the model. Its value ranges from 0 to 1, where 1 indicates a perfect model fit and
0.5 indicates that the model does not perform any better than random chance. A total of 259 landslides
and an equal number of non-landslide points not used for training the logistic regression model were
used for validating the landslide susceptibility map. Results of the ROC analysis shown in Figure 10
give an AUC value of 0.90, which is higher than the 0.7 suggested for a successful prediction [103].
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Table 4. Percentage of landslide susceptibility classes in the study area.

Susceptibility %

Very low 35.30
Low 18.28

Moderate 13.45
High 14.14

Very high 18.83
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5. Discussion

This study represents the first time VHR imagery was applied using the OBIA methodology to
map landslides along the Karnali highway. This method was only successful in mapping 59% of the
landslide areas relative to the reference inventory. Upon close investigation (Figure 11), it was noted
that the OBIA based method was successful in delineating landslide scarps, but was unable to detect
long narrow debris trails due to the lack of distinct spectral properties. A similar result and issue
was reported while mapping landslide hotspots in New Zealand using OBIA [94]. Error may have
been introduced by using the 30 m DEM, the single segmentation scale used for identification of the
landslide candidates, and the removal of false positives in this study. The OBIA detected landslide
inventory accuracy decreases gradually with the reduction of DEM resolution [104]. Most of the studies
using OBIA for landslide detection utilized a high-resolution DEM (10 m and higher) created from
sources such as stereo pairs [37], LiDAR [47] and contours [38]. Another factor contributing to the
error might be the single segmentation scale used in this study. Multiple scale-based false positive
identifications significantly improves the overall accuracy [42]. However, creating a DEM and using
multiple segmentation scale OBIA landslide detection for areas as large as the entire Karnali highway
is a challenge.

A total of 1161 initiation points were obtained based on landslide areas delineated from VHR
imagery. In this study, we did not address amalgamation (i.e., mapping of several adjacent landslides as
a single landslide) that might have occurred during merging and exporting from eCognition. However,
amalgamation must be addressed if landslide inventories obtained using OBIA are to be utilized
for studies where individual characteristics of a landslide are of importance, such as assessment
of area–frequency distributions and estimation of landslide volumes [105,106]. A hybrid approach
that combines OBIA with manual improvement could streamline the whole mapping process with
acceptable accuracy, and reduce the time and effort needed for generating landslide inventories [94].
In mountainous areas, shadow is a major problem. Landslides that lie within shadows cannot be
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detected using optical imagery. Hence, field validation and inclusion of those landslides missed,
because of this issue and the OBIA methodology in general, must be prioritized.Remote Sens. 2019, 12, x FOR PEER REVIEW  16 of 23 
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Based on initiation points, a landslide susceptibility map was produced using logistic regression.
Although a good prediction rate (AUC value of 0.90) was achieved, some inherent problems related
to the statistical method remain. The landslide inventory contains all types of landslides. Hence,
the susceptibility map produced is highly generalized. Training the model for each landslide type might
result in a slightly different susceptibility map that may be more suitable for local scale analysis. Use
of initiation points may lead to underestimation of the hazard, as it does not consider size or runout of
the landslide. Similarly, small landslides are assigned the same weight as larger landslides, which may
result in a shift towards higher susceptibility further up on the slope [107]. Logistic regression is based
on the assumption that past combinations of explanatory variables that have resulted in landslides in
some area holds true in other areas as well. However, finding the optimal combination of variables is
not always straightforward [108]. The training data only included landslide information from a 3 km
buffer along the highway, which might not sufficiently capture all variable combinations responsible
for landslide occurrence. Thus, some critical slopes might not be identified as highly susceptible zones.
In order to avoid these scenarios, continuous monitoring and updating of the susceptibility map must
be prioritized. Nevertheless, this study shows that remote sensing and the OBIA methodology is
valuable for detecting landslides in a short amount of time in order to systematically characterize
landslide pattern and improve our ability to identify susceptible zones in remote regions such as the
Karnali highway in Mid-Western Nepal.

This study established landslide locations and areas along the Karnali highway for the first time.
Approximately 33% of the study area lies in high/very high susceptibility zones. The road section that
lies between Bangesimal and Manma towns is highly susceptible to landslides. This spatial and areal
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distribution will be helpful for decision makers to focus on locations with higher densities of landslide
activity. There may be additional opportunities to further characterize slow moving landslides by
considering displacement rates obtained from synthetic aperture radar (SAR) [49,109]. However,
in mountainous regions such as Karnali, shadow, layover and decorrelation due to vegetation and snow,
are factors limiting the applicability of SAR [110]. The 30 m susceptibility map provides estimates of
locations where landslides might initiate and does not model landslide flow and deposition. Thus,
it cannot be used for land-use planning, emergency response and engineering decisions directly. It can
be used to provide a general overview of landslide hazard in the area and to delineate areas that might
benefit from low-cost slope stabilization measures such as bioengineering [111,112]. These preventive
measures not only help minimize landslide occurrence but also protect the population from its cascading
impacts. While the susceptibility map proposed here is static, it can be used with dynamic variables
such as satellite precipitation [113] to create a hazard map and identify sections of the highway that
may be more likely to be exposed to landslides each season or with particular extreme rain events.
However, this would require improved temporal information on when landslides occurred. Continuous
monitoring of landslides and their evolution in time may be possible with recent availability of free
high-resolution imagery from Sentinel-2 however, the resolution remains too coarse to resolve smaller
landslide events. Additional information on population from Landscan [114] or Gridded Population
of the World [115] can be used to better understand the potential exposure and risks to populations
within the region.

6. Conclusions

A landslide inventory was created from VHR imagery in 2012 and 2018 using OBIA within
a 3 km buffer of the Karnali highway. To our knowledge, this is the first landslide inventory in
this area. The OBIA method was able to identify 59% of the landslide area obtained from manual
mapping. The primary reason for the mismatch in landslide area was due to the challenge in detecting
landslide tail or runout. Using landslide initiation points derived from the OBIA-based inventory area
as training data, a landslide susceptibility map with a spatial resolution of 30 m was created using
logistic regression. The map has a good prediction rate, with an AUC of 0.90. Results indicate that
approximately 33% of the study area lies in high/very high susceptibility zones. The road section
between Bangesimal and Manma was found to be the most hazardous. This susceptibility map provides
the first estimates of highly susceptible areas to landslides along the Karnali highway, which can
inform decisions about where to apply mitigation approaches, such as bioengineering. This method
demonstrates the potential for conducting similar analyses in remote areas, providing the first step
towards hazard and risk estimates and can be expanded to other landslide-prone regions around
the country.
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